Prabhat Academy Ashtbhuja Nagar, Pratapgarh Half-Yearly Examination (2019-20)
 Class : $11^{\text {th }}$
 Sub. : Physics
 M.M. : 100

Time: $\mathbf{2 . 3 0}$

Question 1

(A) Answer the following questions briefly and to the point:
(i) A bullet fired vertically upward falls at the same place after some time. What is the displacement of the bullet?
(ii) A constant retarding force of 100 N is applied to a body of mass 10 kg moving initially with a speed of $30 \mathrm{~ms}-1$. What is the retardation of the body?
Question 2
(a) Round off 3.7846 up to 3 significant figures.
(b) What is meant by absolute error?

Question 3
State any two limitations of dimensional analysis.
Question 4
Write an expression for magnitude of the resultant vector ' R ' of two vectors \vec{A} and
\vec{B} acting at a point. When will this resultant vector ' R ' be maximum?
Question 5
(a) A box of 50 kg is lifted by a man of mass 60 kg to a height of 50 m . Calculate the work done by the man
(b) How much mass of water can be lifted by a pump motor of 9.8 KW in one minute to a height of 5 m ?
Question 6
A shot fired from cannon explodes in air. What will be the changes in the momentum and the kinetic energy?
Question 7
Two bodies of masses 0.5 kg and 1 kg are lying in the $\mathrm{X}-\mathrm{Y}$ plane at points $(-1,2)$ and $(3,4)$ respectively. Locate the centre of mass of the system.
Question 8
(a) Calculate the acceleration ' \mathbf{a} ' of the system and the tensions $\mathbf{T}_{\mathbf{1}}$ and $\mathbf{T}_{\mathbf{2}}$ in the strings as shown in figure 1. (Assume that the table and the pulleys are
frictionless and the string is massless and inextensible).

Question 9

(b) A body of mass 50 kg is hung by a spring balance in a lift. Calculate the reading of the balance when:
(i) The lift is ascending with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$.
(ii) The lift is descending with a constant velocity of $2 \mathrm{~m} / \mathrm{s}$.
(iii) The lift is descending with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$.

Question 10
Derive an equation for displacement of a projectile fired at an angle θ from the ground.
Question 11
When a cyclist negotiates a circular path of radius ' r ' with velocity ' v ', making an angle θ with the horizontal, show that $\tan \theta=\underline{V^{2}}$
rg
Question 12
A fly wheel is rotating at a speed of 160 r.p.m. whose weight is 20 Kg and its centre of mass is at a distance of 0.01 m from the axis of rotation. Calculate:
(i) moment of inertia of the fly wheel.
(ii) the energy stored in the fly wheel.

Question 13

(a) (i) - If $\mathrm{A}=-\hat{\imath}+3 \hat{\jmath}+2 \hat{\mathrm{k}}$ and $\mathrm{B}=3 \hat{\mathrm{\imath}}+2 \hat{\jmath}+2 \hat{\mathrm{k}}$ then find the value of $\vec{A} \times \vec{B}$.
(ii) Using the second law of motion show that impulse is equal to the change in momentum.

Question 14
(a) (i) Calculate the work done when $F=(-5 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}) N$ and $S=(3 \hat{\imath}-\hat{\jmath}+2 k) m$
(ii) Show with the help of a vector diagram that the work done is a scalar product of force and displacement.

