

Prabhat Academy Ashtbhuja Nagar, Pratapgarh Half-Yearly Examination (2019-20)

Class: 11^{th}

Sub. : Physics

Question 1

Time: 2.30

(A) Answer the following questions briefly and to the point:	[5]
(i) A bullet fired vertically upward falls at the same place after some time. What is t	he displacement
of the bullet?	
(ii) A constant retarding force of 100N is applied to a body of mass 10kg moving ini	tially with a
speed of 30ms-1. What is the retardation of the body?	5
Question 2	[5]
(a) Round off 3 7846 up to 3 significant figures	[5]
(a) Round on 5.7640 up to 5 significant rightes.	
	[7]
Question 3	[6]
State any two limitations of dimensional analysis.	
Question 4	[6]
Write an expression for magnitude of the resultant vector 'R' of two vectors \vec{A} and	
\vec{B} acting at a point. When will this resultant vector 'R' be maximum ?	
Question 5	[6]
(a) A box of 50kg is lifted by a man of mass 60kg to a height of 50m. Calculate the	work done by
the man	2
(b) How much mass of water can be lifted by a pump motor of 9.8KW in one minute	to a height of
5m?	C
Ouestion 6	[8]
A shot fired from cannon explodes in air. What will be the changes in the momentum	and the kinetic
energy?	
Question 7	[8]
Two hodies of messes 0.5kg and 1kg are lying in the V.V. plane at points (1.2) and (2 4)
Two boules of masses 0.5kg and 1kg are tying in the X-1 plane at points (-1, 2) and (3,4)
respectively. Locate the centre of mass of the system.	503
Question 8	[8]
(a) Calculate the acceleration (a) of the system and the tensions \mathbf{T} and \mathbf{T} in the string	an an abourn in

(a) Calculate the acceleration 'a' of the system and the tensions T_1 and T_2 in the strings as shown in

figure 1. (Assume that the table and the pulleys are

frictionless and the string is massless and inextensible).

Question 9

- (b) A body of mass 50kg is hung by a spring balance in a lift. Calculate the reading of the balance when:
 - (i) The lift is ascending with an acceleration of $2m/s^2$.
 - (ii) The lift is descending with a constant velocity of 2m/s.
 - (iii) The lift is descending with an acceleration of $2m/s^2$.

Question 10

Derive an equation for displacement of a projectile fired at an angle θ from the ground. Question 11

When a cyclist negotiates a circular path of radius 'r' with velocity 'v', making an angle θ with the horizontal, show that $\tan \theta = \underline{V}^2$

Question 12

A fly wheel is rotating at a speed of 160 r.p.m. whose weight is 20 Kg and its centre of mass is at a distance of 0.01m from the axis of rotation. Calculate:

(i) moment of inertia of the fly wheel.

(ii) the energy stored in the fly wheel.

Question 13

(a) (i) - If A = $-\hat{i} + 3\hat{j} + 2\hat{k}$ and B = $3\hat{i} + 2\hat{j} + 2\hat{k}$ then find the value of $\vec{A} \times \vec{B}$.

(ii) Using the second law of motion show that impulse is equal to the change in momentum. Question 14 [8]

- (a) (i) Calculate the work done when $F = (-5\hat{i} + 3\hat{j} + 2\hat{k})N$ and $S = (3\hat{i} \hat{j} + 2k)m$
 - (ii) Show with the help of a vector diagram that the work done is a scalar product of force and displacement.

[8]

[8]

[8]

[8]